seims.parameters_sensitivity.figure Namespace Reference

Functions

def cal_row_col_num (tot)
 
def sample_histograms (input_sample, names, levels, outpath, outname, param_dict, plot_cfg=None # type:PlotConfig)
 
def empirical_cdf (out_values, subsections, input_sample, names, levels, outpath, outname, param_dict, plot_cfg=None)
 

Detailed Description

Plot figures based on matplotlib for parameters sensitivity analysis.

    @author   : Liangjun Zhu

    @changelog:
    - 18-01-15  - lj - initial implementation.
    - 18-02-09  - lj - compatible with Python3.
    - 19-01-07  - lj - incorporated with PlotConfig

Function Documentation

◆ cal_row_col_num()

def seims.parameters_sensitivity.figure.cal_row_col_num (   tot)
determine the appropriate row and col number.
Cols number decreases from 8 to 5 to figure out the most uniform row and col num.

◆ empirical_cdf()

def seims.parameters_sensitivity.figure.empirical_cdf (   out_values,
  subsections,
  input_sample,
  names,
  levels,
  outpath,
  outname,
  param_dict,
  plot_cfg = None 
)
Visualize the empirical cumulative distribution function(CDF)
of the given variable (x) and subsections of y.

◆ sample_histograms()

def seims.parameters_sensitivity.figure.sample_histograms (   input_sample,
  names,
  levels,
  outpath,
  outname,
  param_dict,
  plot_cfg = None  # type: PlotConfig 
)
Plot histograms as subplot.

Args:
    input_sample:
    names:
    levels:
    outpath:
    outname:
    param_dict:
    plot_cfg:

Returns:
    subplot list.